
ON TEE MOTION OF A ‘VORTEX DBLOW TEE 
SURFACE OF A MQUID 

(0 DVIZBENII VIKUBIA POD POVERKIINOST'IU 
ZBIDKOSTI) 

PAM VoZ.25, No.2, 1961, pp. 242-247 

16.6. FILIPPOV 
(Yoscow 1 

(Received Jane 16, 1960) 

The problem of steady motion of a vortex below the surface of a liquid 
in the nonlinear formulation was considered by Moiseev 11 1. 

Noiseev [ 1 1 showed that for Froude numbers slightly larger than Mits 
two solutions are possible In every case. One of the solutions describes 

a flow passing Into plane-parallel flow as the intensity of the vortex 
tends to zero: the other solution describes flow which tends under the 
same conditions into a solitary wave. A theorem of existence and unique- 
ness of the first solution “in the smallm was established by Ter-Krikorov 
[ 2 1 . The present author [3 1 established a theorem of existence and 
uniqueness for the second solution, but also only ,in the smallg, i.e. 
for small values of the Intensity of the vortex. 

Below, we establish a theorem of the existence of the first solution 
for finite values of the Intensity of the vortex. The proof of the 
theorem is based on an application of the topological methods of Lray 
and Schauder’ s fixed-point theory [4 1. 

1. Formulation of the problem. ‘l%e problem of steady motion of 
a vortex below the surface of a heavy ideal liquid in dimensionless vari- 

ables reduces to the determination of the analytic function ((2) = 

6% y) + ir)(x, y), which conformally transforms the physical z-plane 

(Fig. 1) on a strip of unit width 0 < 7 < 1 in the parametric [-plane 
(Fig. 2). Setting 

4 -= 
dZ 

e-W<) , a (5) = e(t, rl) -1- iz (E, q) 

we reduce the problem to the determination of the analytic function o(c) 
which satisfies, the following conditions (see C2 1 1: 
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(1.1) 
ail _ eW3’sin Q f’ m 
3 v f2(5) +m7 

v<l whenq=l 

0=0 whenI~I-+oo, 8 = 0 when q = 0 (1.2) 

Here 

Fig. 1. 

i-co 

p = a + Im \ [eia(') - I]& 

iP 

a and p are the depths of submergence of the vortex in the physical and 
the parametric planes, respectively. 

In order that the velocity at the free surface L should not vanish, it 
is necessary to fulfil the condition y < 2 cot w/2/3. 'Ihis condition is 
always fulfilled when y < 0. This case is of special interest, since the 
lift force is directed upwards. 

lhe function w(c) determines, up to a constant, the single-valued 
function z(c). A sufficient condition to ensure the one-sheeted nature 
of the function z(r) is the condition [5 1 

I e (E, 1) I <a-c (1.4) 

the 
We notice that in the given dimensionless formulatj;Tu;he solution of 
problem is determined by the parameters Y, V0 = e , Y and 8. 

2. Green's function. lhe general equations of the problem. 
'Ihe fundamental boundary condition (1.1) can be written in the form 

ae 
aT - v 

em3” sin fj f’ (E) 
f3 m 

+-=F(E) when q=l, 
f (8 

0 = 0 when q = 0 (2.1) 

We shall define the Green's function of the problem (2.1), as the 
function C(c, 6') = H([, 6') + ;Q([, 6'1, analytic in the strip 0 < r) < 1, 
having a logarithmic singularity at the point 4 = t', 77 = q', and satisfy- 
ing the conditions 

aH 
-=0 whenq-1, 
8s 

H = 0 when II = 0 (2.2) 

lhe Green's function G satisfying conditions (2.2) has the form 

(2.3) 
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Setting 7' = 1 in this, we obtain the 

Theorem 2.1. If F(t) is an absolutely 

integrable function, the the function 

theorem. 5 1 t 

Fig. 2. 

is analytic in the open strip 0 < 71 < 1, continuous in the closed strip 
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0 < 7 < 1, and if F(e) is an odd function, then the real part of ~(5) 

satisfies conditions (1.2) and (2.1). 

'lhis theorem is proved in a manner similar to the theorems (3.1) and 

(3.2) in [2 1. 

Separating the imaginary and real parts of (2.3), we obtain 

e=~~+~H,(5-Ef,9)F(5')dS', ~=-2++~Q,(5-I'. +'(C')G' (2.4) 
---a3 --M 

where 

sinIc(5-_')coshl411cEtL=2tan-1 
ycosh~ 

-03 

The first integral (2.4), according to 'Iheorem (2.1), is continuous 
when r) = 1, and the second when 1 = 0. Accordingly, using the notation 

NC, 1) = e(g), r(e, 1) = r(6), r(5, 0) = r,(5), we obtain 

F (E’) 4’ (2.5) 

Z,(c)= - -$ytan-' ( sinh 'lzn(E --E')> W+')dE' (2.6) 
--oo 

Moreover, making use of the relation de/$ = -&/a,$, from (1.1) we 

find the relation between e(c) and r(t): 

(2.7) 

Let us notice certain properties of the required function in the half- 

strip 0 < rj < 1, - m< 6 =G 0. From condition (1.2) it follows that the 
integral 



360 I. G. Fi 1 ippov 

is finite and that the function r(e) is continuous and equal to zero 
when ]r[ = o. From (2.7), also, it follows that the function r(f) is 
continuous and differentiable with respect to [ and bounded: 

; 7 (8 i -S P, p == -1IlV 0 (2.8) 
Then from (2.6) the function r,(f) is also 

seen, (r,(S)1 Q p. 

bounded and, as is easily 

The function 0(e) is bounded on L’ and the following inequality holds: 

Y(7) (2.9) 

The inequality (2.9) is easily obtained from (2.5 ); moreover 

lhe condition of one-sheetedness (1.4) of the function z(c) imposes 
a supplementary restriction on the initial parameters Y, V,, y of the 
form 

y/vo3 i- Y(7)<:” (2.10) 

Note. By virtue of (2.9) the following inequality also holds: 

ie(5)l~~/~03max/~(~)l~t-p(r) 
Hence, it follows that when Y < I. 

(2.U) 

i.e. when y = 0 the flow becomes plane-parallel. 

OR the other hand, from (2.10) it follows that as y increases in 
absolute value v must decrease, i.e. the solution satisfying condition 
(2.10) corresponds to high-speed flows. 

Accordingly, if the function F(c) is odd, i.e. the wave is symmetrical, 
the functions d(c), r(e), r,(t) satisfy Equations (2.7), (2.5) and (2.6) 
and all the bo~da~ and asymptotic conditions. Let us denote by V the 
system of equations (2.5), (2.6), (2.7) h w ere a is the functional (1.3), 
whilst the initial parameters satisfy the condition (2.10). 
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We shall study the question of the existence of a solution of the 
system V, assuming that e(e) belongs to the class of functions having 
a given a priori modulus of continuity (or majorant) at infinity of the 
form 18([)1 <CT(c), where C ,is, as yet, an arbitrary constant and T(c) 
satisfies the following conditions: 

a) the function T(t) is continuous when - 00 < [ < + .w, positive and 
even, decreasing wheno[‘> 0. increasing when 4 < 0, and T(f -) = 0; 

b) the integral c T(E)dg is finite. 
* 

Introducing the mzlus of continuity of e(c), the system V can be 
replaced by a system V,, depending on C and T(t), to which we apply 
Leray and Schauder’s fixed-point theory [4 1 . We define the majorant 
T(e) and C so that a solution of the system V, is a solution of the 
system V, and we prove that the system V, has a solution in every case. 

3. Construction of the system V,. Functional equations of 
the problem. Let us assume that there exists a constant C- a positive 
number - and a continuous function T(e), satisfying conditions (2.11), 
such that 

I fl(E) I < CT (E) (3.1) 

Let us consider a certain solution of the system Vwhich satisfies 
condition (3.1). let e(t) satisfy condition (1.4), and r(t) and 0(g) be 
connected by relation (2.7). Ihen condition (2.7), according to (3.1), 
can be written in the form 

(3.2) 

where - r (0 is a positive function, and sup ( Q1(5), Q2,<5>1 denotes the 
lower envelope of the two positive functions Q1 (0 and Q,(t). 

let us denote by V, the system (2.51, (2.6) and (3.2). The system V, 
depends on C and T(t). It is not difficult to see *that 

Then, according to (2 .l), it is natural to set 

T (E) == e-~l~l (3.3) 

Moreover, the function T(t) is chosen so as to satisfy all the condi- 
tions (2.11). 
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Let us assume 
that the initial 

that we have a certain solution of the system Vc, and 
parameters V, V, and y satisfy condition (2.9). ‘Ihis 

solution differs from a solution of the system V only in that on the 

upper boundary of the region D’ (Fig. 2) we have condition (3.2); hence 
it follows that 

(3.4) 

The inequality (3.4) enables us to estimate the magnitude of 0(t) 
from (2.5). Since F(t) = Jr/J6 it is easy to show that 

IWIGW) {vlv”3+- P/C) (3.5) 

From inequality (3.5) it follows that when v/V,,” < 1 the constant C 
can be chosen in such a way as to fulfil condition (3.1). 

Accordingly, under condition (2.10) there exists a system V, which 
possesses all the necessary properties. Let us prove that the system V, 
can be reduced to a functional equation. 

For this purpose let us introduce the space B of functions $([) which 
are continuous and finite in the interval - .w< 5 Q 0, and with a norm 
11+(5‘)/1 = maxlr$([)l; the space B is linear, normalized and complete. 

We introduce the notation 

- z(E) = H,(E), e (E) = H2 (Eh - To (E) = H3 (8 

‘Ihen the system Vc can be replaced by the following system of equa- 
tions: 

(3.7) 

(3.8) 

(3.8) 

Let us consider a certain solution of the problem. From the form of 
(3.7) and (3.8) it follows that H,(c) and H,(t) belong to B. From (3.6) 
it also follows that the differentiable function H,EB. 
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If we denote by R = B x B x B tbe space of vectors with components 

r(t), 6(g), r,(5) and with norm Ily 11 h w ere y=R, then the system (3.6) 

to (3.9) can be written in the form of a funotional equation 

Y = W(Y), YER (3.10) 

which places the element y with coordinates r(c), O(c), r,(t) in corre- 

spondence with the element y' with coordinates H,(E), H,(t), R,(e). 'Ihe 

- space R is linear, normalized and complete. 

4. 'Ibe existence of a solution. We shall 

W is completely continuous, i.e. it is continuous 

bounded set of R. 

prove that the operator 

and compact on any 

J3y assumption the operator W acts on a hounded set of R. Therefore, 

from the form of Equations (3.6) to (3.9), it is not difficult to 

establish that the functions'R1(t), R,(c), H,(c) belong to the space B, 

and depend continuously upon r(S), 6(S), and, moreover, dR,/dt$ is finite 
in the interval -.=.< 4 g 0. Let us prove that the operator W is compact. 

'Ihe function'H1([), defined by the right-hand side of (3.6), for any 

point YE R satisfies the relations 

where 

under the condition 

fulfilled. 

p = 2 cos ‘/g@ (2 co@ 1/gcfi - l/gy sin a@) 

/~~/~CT(5)(~+~)gCT(E) (4.2) 

that ,v/Va3 < 1 and a C such that condition (3.1) is 

From inequalities (4.1) and (4.2) and the properties of the function 

T(g), it follows that ff,@)ER and the operator H, is continuous to the 

same degree and uniformly bounded on any finite sphere of R. 

Similarly it can be shown that R,(e) and R,(t) belong to R, are con- 

tinuous to the same degree, and are uniformly bounded on any sphere of R. 

Hence, on the basis of Artsel's theorem, it follows that the operator 

W is compact, and since W is also continuous then consequently it is also 
completely continuous on every sphere of R. 

Theorem 4.1. 'Ihere exists at least one solution of the problem, the 
initial parameters of which satisfy the inequalities 
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(4.3) 

Let us consider a certain solution of the functional equation (3. lo), 
the initial parameters of which satisfy the inequality 

(4.4) 

When the inequality (4.4) is fulfilled the given solution defines a 
certain flow pattern of the liquid, on the boundary of which the condi- 
tion (3.2) or (3.6) is fulfilled. Moreover, since from (3.7) we have the 
inequality 

we can prove that 11 y/ Q const Ab, V,,, y, p> + const. 

Let us further consider the equation 

Y = Bf CF.‘* Y) (4.5) 

which is obtained by replacing v and y by p’v and p’y. It is not difficult 
to show that when the inequality (4.4) is fulfilled, which with the sub- 
stitution of v and y by ptv and p’y is an entire increasing function of 
~1’; the sol t u ions of EYquation (4.5) are uniformly bounded when 0 < p’< 1, 
the operator W is completely continuous for every p’.in the interval 
0 ;g p’-g 1, and uniformly continuous with respect to p’- for every value 
of y in a sphere of the space R. 

Setting p’.= 0 in EIquation (4.51, we obtain y = 0. Consequently 14 1, 
the complete index of the functional equation (4.5) when CL’.= 0 is equal 
to + 1, and hquation (3.101, obtained from (4.5) when p’.= 1, has at least 
one solution. Accordingly, the problem is solved. 

Note (4.1). Conditions (4.3) and (4.4) imply that v < 1 and that as y 
increases in magnitude v diminishes. Such solutions correspond to high- 
speed-flow patterns. 

Note (4.2). From the condition 0 G ( @t&l < r 0x1 the half-strip 

O<‘t<l* -.OO < (E Q 0, it follows that the form of the given half-strip 
does not overlap. But it can happen that the given half-strip (see Fig. 
2) does overlap the symmetric half-strip. A sufficient condition for the 
non-overlapping of the half-strips 0 Q q < 1, - 01 < 6 G 0 and 0 G q G 1. 
0 g c < + ~)(r is the condftion I@(&\ < l/2 ?r. and consequently condition 
(2.9) may be replaced by the following: 
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